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An adaptive mesh procedure for computing steady state solutions of 
the compressible Euler equations in three dimensions is presented. The 
method is an extension of previous work in two dimensions. The 
approach requires the coupling of a surface triangulator, an automatic 
tetrahedral mesh generator, a finite element flow solver and an error 
estimation procedure. An example involving flow at high Mach number 
is included to demonstrate the numerical performance of the proposed 
approach. The example shows that the use of this form of adaptivity in 
three dimensions offers the potential of even greater computational 
savings than those attained in the corresponding two-dimensional 
implementation. 8 1992 Academbc Press. Inc 

1. INTRODUCTION 

One of the most challenging problems currently facing 
computational fluid dynamicists is the accurate solution of 
industrial three-dimensional flows. These flows are charac- 
terised by solution domains of complicated shape and/or by 
the appearance of complex flow features. Assuming that the 
geometry of the computational domain can be adequately 
represented, accurate solutions can be produced by existing 
techniques, provided that the mesh employed is sufficient to 
resolve the solution. Approaches which attempt to achieve 
this by a priori generating the finest grid which will fit into 
the largest available computer are of limited usefulness. The 
natural alternative is to attempt to adapt the grid in some 
fashion, according to the computed solution, so that the 
best use is made of the available grid points by distributing 
them in an ‘optimal’ manner. 

A popular approach for the analysis of two-dimensional 
compressible inviscid flows has been to attempt to achieve 
this adaptation of the mesh by local enrichment and 
successful demonstrations have been made on both quadri- 

lateral [ 1, 21 and triangular grids [3-51. However, as there 
is a significant increase in the problem size following 
each adaptation, experiences with this method in three 
dimensions [4, 61 have indicated that, currently, only one 
or two refinements can generally be afforded. An alternative 
adaptive approach, which has proved to be successful in 
three dimensions, is to move the mesh nodes while 
maintaining the original grid connectivity [7, 81. With 
this approach, however, as no new nodes are added, the 
accuracy of the final computation is limited by the structure 
and resolution of the initial grid. 

In an earlier paper [9], the authors addressed these 
problems in two dimensions within the context of solution 
algorithms implemented on unstructured triangular grids. 
The essential feature of the advocated approach was the 
introduction of a general triangular advancing front mesh 
generator, which was capable of automatically generating 
meshes according to a prescribed distribution of mesh 
spacing. In addition, directionality was included by 
allowing for the generation of stretched elements according 
to a prescribed distribution of stretching directions. When a 
computed solution was subjected to a directional error 
indication procedure, information about the ‘optimal’ mesh 
distribution was obtained and the mesh was adapted to the 
computed solution by complete regeneration. This adaptive 
method allowed for the creation of new nodes in the regions 
where higher resolution was deemed to be required and, at 
the same time, the mesh could be made coarser in smoother 
regions of the flow. Several examples were included which 
showed how the solution quality could be enhanced without 
a dramatic increase. in the number of unknowns. The results 
showed that the advocated adaptive algorithm combined 
the main advantages of both the mesh enrichment and the 
mesh movement methods. This approach has subsequently 
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been successfully followed by other workers in the same 
area [lO-121 and has been extended to handle the simula- 
tion of transient compressible flows involving moving 
bodies [ 13-151. By simply changing the error estimator, the 
method has also found application in the fields of solid 
mechanics [ 16-191 and heat transfer analysis [20]. 

It is therefore natural to attempt to further extend these 
ideas and investigate the possibilities of producing, in this 
way, a practical solution algorithm for steady three-dimen- 
sional Euler flows. The essential feature of the approach will 
again be an advancing front mesh generator, which in this 
case will be capable of generating tetrahedral elements of a 
prescribed size and with a prescribed direction of stretching. 
The boundary of the computational domain will be dis- 
cretised into triangular elements and this collection of 
triangular faces will form the initial front for the tetrahedral 
generator. The boundary triangulation process requires that 
the surface of the computational domain be represented in 
a mathematically convenient form. An adaptive mesh 
method can then be proposed, exactly as in two dimensions, 
in which a computed solution is subjected to an error 
indicating procedure and a new grid is generated according 
to the predicted distributions of mesh spacing and 
stretching. In this paper, we describe this three-dimensional 
extension, involving the coupling of a surface triangulator, 
an automatic tetrahedral mesh generator, an unstructured 
grid flow solver, and an error estimating procedure. An 
efficient computational implementation of the proposed 
method is essential if the solution of realistic problems is to 
be attempted and a description of how this can be achieved 
in this context is given. The numerical performance of the 
adaptive remeshing procedure in three dimensions is 
demonstrated for a problem involving a shock interaction in 
high Mach number flow over a swept circular cylinder. 

2. GEOMETRY MODELLING 

Three-dimensional flow computations can be performed 
when the chosen computational domain has been suitably 
discretised. Here the domain to be discretized is viewed as a 
three-dimensional region which is bounded by surfaces 
which intersect along curves. The portions of these curves 

and surfaces needed to define the three-dimensional domain 
of interest are called curve and surface components, respec- 
tively. Figure 1 shows the decomposition of the boundary of 
a three-dimensional domain into its appropriate surface and 
curve components. For computational convenience a 
mathematical definition of these components is employed. 
This definition is achieved by using composite curves and 
surfaces [21-231 which are fitted through a user-prescribed 
set of points. 

2.1. Curve Representation 

Curves are represented in parametric form by con- 
structing a piecewise interpolation of cubic polynomials 
through an ordered set of data points. In the Ferguson 
representation [22], each cubic polynomial is expressed, 
in terms of the position and tangent vectors at the two end 
points, as 

r(l) 
11 

p) 
r(v)= (1 ou2v3}C t(l) , O<UUl, (1) 

L tq 

where r(l) and r(*) are the coordinates of the end points of 
the segment, t(l) and t(*) are their respective tangents, and C 
is a constant matrix given by 

c= 

1 0 0 0 
0 0 1 0 

-3 3 -2 -1 
2-2 1 1 1. (2) 

Curve componelr!s Surface components 3-G domain 

- Dlscretlzatlon process - 

FIG. 1. Decomposition of the boundary of a three-dimensional 
computational domain into surface and curve components. 

FIG. 2. Interpolation of a piecewise cubic spline through a set of 
points. 
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Here, the tangent to the curve is defined to be 

WV) 
t(v) = r’(v) = 7’ (3) 

The number of data points, and their spatial distribution, 
should be given in such a manner that the interpolated 
curve accurately approximates the intersection of the 
corresponding surface components. The interpolation 
problem, which is illustrated in Fig. 2, consists of fitting a 
parametric spline, defined in a piecewise manner, through a 
set of n points r,,j = 1, . . . . n. At interior points, continuity of 
slopes is guaranteed for any choice of the tangent vectors, 
provided that a unique tangent vector is used for the 

definition of the two adjacent cubic segments. However, by 
employing a simple procedure [21], these vectors can be 
determined so that continuity of curvature is achieved 
throughout the interpolated curve. At the two end points, 
zero curvature is assumed. For convenience, a global 
parametric coordinate u is defined. For the cubic polyno- 
mial joining points j and j + 1 this coordinate is related to 
the local coordinate v according to u = v + j - 1. In this way, 
a global mapping r(u) is established between the region in 
the parametric space defined by 0 < u < n - 1 and the cubic 
composite curve. 

2.2. Surface Representation 

The mathematical representation of a surface component 
is obtained by interpolating a composite surface, made up of 

I 
& 

Parameter plane 

FIG. 3. Interpolation of a composite surface through a set of points. 
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quadrilateral patches, through a topologically rectangular 
set of data points rjk, j = 1, . . . . p; k = 1, . . . . q (see Fig. 3). Two 
families of parametric lines are obtained by interpolating 
spline curves, first through the points of constant j and then 
through the points of constant k. The procedure used for 
interpolating each spline curve is that described in the 
previous section. The mathematical expression for every 
quadrilateral surface patch is given, in terms of the four 
cubic curves that form its boundary and the twist vector at 
the four corner points, as 

r(l) r(4) &I) 

r(4 w) = (1 u u2 03)C 
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where C is the matrix previously defined in (2), C’ is its 
transpose, and the comma denotes partial differentiation, 
i.e., 

ar ar a2r 
r,,=z, r,,=z, r,,,=G. (5) 

Here the corner points of the patch are given as 

r(l) = r(0, 0), rc2) = r( 1, 0), 

d3’=r(l, l), rc4) = r(0, 1). 
(6) 

This representation uses a Hermite interpolation between 
opposite boundaries of the patch [23]. The twist vectors 
(r,vw)jk at the corner points are computed so that overall 
second-order continuity is achieved on the interpolated 

Surface component 

The algorithmic procedure adopted for the generation of 
tetrahedra is a three-dimensional extension of the triangula- 
tion method proposed in [9] and is based upon a 
generalization of the advancing front technique [25,26]. 
The generation problem consists of subdividing an 
arbitrarily complex three-dimensional domain into a con- 
sistent assembly of tetrahedra. A distinctive feature of the 
approach is that tetrahedra and points are generated 
simultaneously. This enables the generation of elements of 
variable size and stretching and differs from the approach 
followed in tetrahedral generators which are based upon 
Delaunay concepts [27, 281, which generally connect grid 
points which have already been distributed in space. 

FIG. 4. Approximate geometry for a surface component. The three-dimensional mesh is constructed by first dis- 

FIG. 5. Orientation of the curve components relative to the surface 
components. 

surface. The implementation details of this algorithm can be 
found in [24]. Global parametric coordinates ui and u2 are 
defined, such that for the patch (j, k) these coordinates are 
related to the local patch coordinates u and w according to 
u,=u+j-landu,=w+k-l.Hence,aglobalmapping 
r(ul, u2) is established between the rectangular region in the 
parametric plane delined by 0 < u1 < p - 1, 0 < u2 < q - 1, 
and the tensor product surface. 

An example of the approximated geometry for a surface 
component and its corresponding curve components is 
displayed in Fig. 4. It can be observed that the boundaries 
of the interpolated composite surface are not required to 
coincide with those of the surface component. 

For each surface component the set of data points is 
defined in such a way that the vector product of r,” and r,w 
points into the computational domain. In addition, the 
curve components have an orientation relative to the 
surface component being considered. This is illustrated 
in Fig. 5. 

3. MESH GENERATION 
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cretising the boundary curve components, then subdividing 
the boundary surfaces into triangular planar faces, and 
finally discretising the three-dimensional domain into 
tetrahedra. 

3.1. Characterisation of the Mesh: Mesh Parameters 

The geometrical characteristics of a general mesh are 
locally defined in terms of certain mesh parameters [9]. In 
three dimensions the parameters used are a set of three 
mutually orthogonal directions aj, i= 1, 2, 3, and three 
associated element sizes 6 ;, i = 1, 2, 3 (see Fig. 6). Thus, at 
a certain point, if all three element sizes were equal, the 
mesh in the vicinity of that point would consist of 
approximately equilateral tetrahedra. For convenience a 
transformation T is introduced which is defined as a func- 
tion of aj and 6,. This transformation is represented by a 
symmetric 3 x 3 matrix and maps the physical space onto a 
space in which tetrahedra, in the neighbourhood of the 
point being considered, will be approximately equilateral 
with unit average size. This new space will be referred to as 
the normalised space. The transformation T is the result of 
superimposing three scaling operations with factors l/6, in 
each a, direction. Thus 

where @ denotes the tensor product of two vectors. The 
effect of this transformation in two dimensions is illustrated 
in Fig. 7 for a case in which the mesh parameters are 
constant throughout the domain. 

3.2. Mesh Control: The Background Mesh 

The inclusion of adequate mesh control is a key 
ingredient in ensuring the generation of a mesh of the 
desired form. Control over the mesh characteristics is 
obtained by the specification of a spatial distribution of 
mesh parameters. This is achieved by the use of a back- 

FIG. 6. Mesh parameters in three dimensions. 
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FIG. 7. The transformation T applied to a mesh with constant 
distribution of mesh parameters. 

ground mesh. The background mesh is used for interpola- 
tion purposes only and is made up of tetrahedral elements. 
Values of ui and hi, and hence T, are defined at the nodes of 
the background mesh. At any point within an element of the 
background mesh, the transformation T is computed by 
linearly interpolating its components from the element 
nodal values. The background mesh employed must cover 
the region to be discretized. In the generation of an initial 
mesh for the analysis of a particular problem, the back- 
ground mesh will usually consist of a small number of 
tetrahedra. The generation of the background mesh in this 
case can thus be accomplished without resorting to 
sophisticated procedures. For instance, a background mesh 
consisting of a single element can be used to impose the 
requirement of linear or constant spacing and stretching 
through the computational domain. 

3.3. Curve Discretization 

The discretization of the boundary curve components is 
performed by positioning nodes along the curves according 
to the spacing dictated by the local value of the mesh 
parameters. In order to determine the position and number 
of nodes to be created on each curve component, the 
following steps are followed: 

(i) Each cubic segment is subdivided into smaller 
segments whose length is less than the minimum mesh 
spacing specified in the background mesh. When sub- 
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dividing a cubic segment, the position and tangent vectors 
corresponding to the new data points are found directly 
from the original definition of the segment. 

(ii) The points used to define the curve and those 
created to satisfy the maximum length criterion in step (i) 
above are denoted by r/, j= 1, ..,, n,. For each such point rr 
the coefficients of the transformation Tj are interpolated 
from the background mesh and the position and tangent 
vectors are transformed according to Pj = Tjrj and i, = Tjt,. 
The vectors ?,j, i,, j= 1, . . . . n,, define a spline curve which 
can be interpreted as the image of the original curve 
component in the normalised space. 

(iii) The length of the curve component is computed in 
the normalised space and subdivided into segments of 
approximately unit length. For each newly created point, its 
parametric coordinates and the cubic segment in which it is 
contained are calculated. This information is used to 
determine the coordinates of the new nodes in the physical 
space, using the curve component definition. 

Consecutive points are then joined by straight lines and 
these lines will form element sides in the final mesh. 

3.4. Surface Discretization 

The next stage in the process consists of subdividing the 
boundary surfaces into triangular planar faces [24]. For 
each surface component, the straight lines produced when 
discretising its boundary curves are assembled into the 
so-called initial front. The relative orientation of the curve 
components with respect to the surface must be taken into 
account in order to give the correct orientation to the sides 
in this front. The method followed for the triangulation 
of the surface components is then an extension of the 
two-dimensional advancing front mesh generation proce- 
dure [9]. In this approach, the front is a dynamic data 
structure which changes continuously during the generation 
process. At any given time, the front contains the set of all 
the sides which are currently available to form a triangular 
face. A side is selected from the front and a triangular 
element is generated. This may involve the creation of a 
new node or simply connecting to an existing one. After a 
triangle has been generated, the front is updated and the 
generation proceeds until the front is empty. Figure 8 
illustrates the idea of the advancing front technique applied 
to a circular planar domain and shows the initial front and 
the form of the mesh and the front at various stages during 
the generation process. 

In the present context, the discretization of each surface 
component is accomplished by generating a two-dimen- 
sional mesh of triangles in the parametric plane u1u2 and 
then using the mapping r(t(, , u2) defined in Section 2.2. This 
mapping establishes a one to one correspondence between 
the boundary surface component and a region on the 

FIG. 8. The advancing front technique applied to a circular planar 
region. Different stages during the triangulation process. 

parametric plane u1 u2 (Fig. 9). Thus, a consistent triangular 
mesh in the parametric plane will be transformed, by the 
mapping r(ul, uZ), into a valid triangulation of the surface 
component. The construction of the triangular mesh in the 
parameter plane u 1 24*, using the two-dimensional mesh 
generator, requires the determination of an appropriate 
spatial distribution of two-dimensional mesh parameters. 
These consist of a set of two mutually orthogonal directions 
a:, i = 1, 2, and two associated element sizes ST, i = 1, 2. 

The two-dimensional mesh parameters in the u1 u2 plane 
can be evaluated from the spatial distribution of the three- 
dimensional mesh parameters and the distortion and 
stretching introduced by the mapping. To illustrate this pro- 
cess, consider the evaluation of the mesh parameters ST, 
a:, i = 1, 2, at a point P*, with coordinates (u,,, uZP) in the 
parametric plane. The image of P* on the surface will be the 
point P with position vector r(ulP, uZP). The transformation 
T, between the physical space and the normalised space at 
this point can be obtained by direct interpolation from the 
background mesh. In the neighbourhood of P, a new 
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(b) 

FIG. 9. Inducing a triangulation on a surface component by mapping: 
(a) the mapping r(u, , u,); (b) transformation of a triangular mesh in the 
parameter plane into a surface triangulation. 

mapping can now be defined between the parametric plane 
U, ZQ and the normalised space as 

Wu,, 4 = T,r(u,, 4. (8) 

A curve in the parametric plane passing through point P* 
and with unit tangent vector fl= (pi, f12) at this point, is 
transformed by the above mapping into a curve in the 
normalised space passing through the point T,r(u,,, uZP). 
The arc length parameters ds and d(, along the original 
and transformed curves, respectively, are related by the 
expression [ 291 

(4)’ = { pg , g g Piflj] tds)*. 
1 I 

(9) 

This relation between the arc length parameters is assumed 
to hold also for the spacings, so that the spacing 6, along 
the direction fl in the parameter plane may be computed as 

(10) 

The two-dimensional mesh parameters a,?, ST, i= 1, 2, are 
determined from the directions in which 6, attains an 
extremum. This reduces to finding the eigenvalues and 
eigenvectors of a symmetric 2 x 2 matrix. 

By assembling the discretised boundary surface com- 
ponents, an initial front for the domain discretisation proce- 
dure is constructed from the set of oriented triangles which 
constitute the discretized boundary of the domain. The 
order in which the nodes of these triangles are given defines 
the orientation, which is the same as that of the corre- 
sponding boundary surface component. To form the front, 
the (u,, u2) coordinates of the nodes already generated on 
the boundary curve components have to be computed. The 
coordinates (u, , u2) of such points are found numerically by 
using a direct iteration procedure [24]. 

3.5. Generation of Tetrahedra 

The final stage in the process is the discretisation of 
the three-dimensional domain into tetrahedra. Although the 
generation of tetrahedra proceeds along similar lines to the 
algorithm described in [9] for the generation of triangles, in 
the three-dimensional case the range of possible options at 
each stage is much wider and the number of geometrical 
operations involved increases considerably. Thus, the 
ability of the method to produce a mesh and the efficiency 
of its implementation rely heavily upon the type of strategy 
selected. The approach adopted here for the generation of a 
generic tetrahedral element involves the following steps 
(Fig. 10): 

(i) A triangular face ABC is selected from the front. 
This will be used as a base for the tetrahedron to be 
generated. In principle, any face from the front could be 
chosen but we have found it to be advantageous in practice 
to consider the smallest faces first. It has been found that 
this choice ensures that the generated mesh follows more 
correctly the specified distribution of mesh parameters, 
especially in regions of rapid variation. For this purpose, the 
size of the face is defined to be the size of its shortest height. 

--._ 
/ -\ 

h 

l Ideal point 
x Help points 
o Points in the front 

FIG. 10. Generation of a generic tetrahedral element. 
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(ii) The transformation T, at the centroid of the face IV, 
is interpolated from the background grid and applied to the 
nodes in the front which are relevant to the triangulation. In 
our implementation we define the relevant points to be 
those which lie inside the sphere of center A4 and radius 
three times the value of the maximum dimension of the face 
being considered. 

(iii) The ideal position P, for the vertex of the 
tetrahedral element in the transformed space is determined. 
The point P, is placed, at a distance 6, from the point M, 
on the line which passes through A4 and which is per- 
pendicular to the face. The orientation of the face uniquely 
determines the location of the point P,. The value 6 i is com- 
puted so that the average length of the three newly created 
sides which join point P, with points A, B, and C is unity. 

(iv) Other possible candidates for the vertex are selected 
and ordered in a list. Two types of points are considered viz.: 
(a) the nodes Q,, Q2, . . . in the current generation front 
which are, in the normalised space, interior to a sphere with 
centre P, and radius r = 1.5 and which lie on the same side 
of the plane ABC as the point P,; and (b) the set of points 
P 1, . ..> P, generated along the height P,A4. For each point 
Q;, a sphere is constructed with center Oi on the line defined 
by points P, and M. The radius of the sphere is chosen such 
that it passes through the points Qj and D, where D is the 
member of the set A, B, C which is furthest away from M. 
The points Oi are placed in an ordered list according to their 
distance from the point P, . The points P,, . . . . P, are added 
at the end of this list. 

(v) The best connecting point is selected. This is the 
first point in the list which gives a consistent tetrahedron. 
Consistency is guaranteed by ensuring that none of the 
newly created sides intersects with any of the existing faces 
in the front and that none of the existing sides in the front 
intersect with any of the newly created faces. 

(vi) Finally, if a new node is created, its coordinates 
in the physical space are obtained by using the inverse 
transformation T-‘. 

3.6. Data Structures 

From the previous section it is apparent that a successful 
implementation of the presented algorithm will require the 
use of data structures which enable certain sorting and 
searching operations to be performed efficiently. For 
instance, the generation front will require a data structure 
which allows for the efficient insertion/deletion of items, or 
faces, and which also enables the operations of geometric 
searching and intersection to be performed efficiently; e.g., 
we frequently require the identification of the items inside a 
prescribed region or the items which intersect in space with 
a given geometrical object. In our implementation we use 
the alternate digital tree [ 303. This is basically a generalisa- 

tion of the binary tree structure [31] that has the ability to 
handle geometric objects such as nodes, faces, or tetrahedra 
as single items. When this data structure is used for the 
generation front and for the background mesh, the com- 
putational cost involved in generating three-dimensional 
meshes scales typically as N* log(N), where N is the number 
of elements generated. This data structure results in a scalar 
process, with intensive indirect addressing operations. 

4. SOLUTION OF THE COMPRESSIBLE 
EULER EQUATIONS 

The equations governing three-dimensional compressible 
flow are considered in the conservative vector form as 

where 

[ 

P’ 

PUl 

u= pv2 

PV3 

PE . 

iXJ 
--+; %0, 

j=l axi 

F,= 

[ 

PUi . 

Pvlvi+~liP 

Pv2vi+62;P 

Pv3vi+63iP 

vi(PE+ PI . 

(11) 

1 (12) 

with p, p, and E denoting the density, pressure, and specific 
total energy of the fluid, respectively, and vi the component 
of the fluid velocity in the xi direction. The pressure is 
determined from the state equation for a perfect gas 

P = (Y - 1) P(E - ;(v: + v; + vi)), (13) 

where y is the ratio of specific heats. 
Here we are concerned with computing the solutions of 

steady compressible flows, which will be obtained by 
advancing equation (11) in time, starting from a given 
initial condition, until a steady state is reached. In the 
example to be reported later, the equations are solved by 
using an explicit time marching scheme with the explicit 
addition of artificial viscosity for the capturing of discon- 
tinuities. The vector of unknowns U is approximated using 
piecewise linear continuous finite element shape functions. 
This scheme has been widely reported for two- and three- 
dimensional simulations [6, 32-351 and therefore will not 
be considered further here. The type of solver employed is 
not essential for the adaptive strategy to be presented below; 
e.g., for two-dimensional simulations, the same adaptive 
procedure has also been employed in conjunction with 
implicit upwind solvers [36, 371. 
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5. ADAPTIVE REMESHING 

The procedures described above allow for the computa- 
tion of an initial approximation to the steady state solution 
of a given problem. This approximation can generally be 
improved by adapting the mesh in some manner. Here, 
following the approach presented in 191, the proposal is 
that the computed solution be used to predict the desired 
characteristics (i.e., element size and shape) for a new, 
adapted mesh. The ultimate aim of the adaptation proce- 
dure is to predict the characteristics of the optimal mesh. 
This can be defined as the mesh in which the number of 
degrees of freedom required to achieve a specified level of 
accuracy is a minimum. Alternatively, it can be interpreted 
as the mesh in which a given number of degrees of freedom 
are distributed in such a manner that the accuracy of the 
solution obtained is the highest possible. In practical 
situations, however, there are several factors which make 
the achievement of such optimal meshes extremely difficult. 
Some of these factors are: 

(i) The concept of optimality is intimately linked to 
that of accuracy, which is not uniquely defined. Hence 
optimality of a mesh needs to be defined with respect to a 
given norm or measure of the error. An additional incon- 
venience related to the measure of accuracy, in the present 
context, arises from the fact that we are attempting to solve 
a coupled set of nonlinear partial differential equations and, 
therefore, a rigorous measure of the error should involve all 
the relevant variables. 

(ii) For linear elliptic operators, finite element algo- 
rithms are readily derived which guarantee that the 
approximation obtained is the most accurate amongst all 
the possible approximations within the space of trial func- 
tions [38]. The accuracy is defined with respect to a norm 
implied by the operator itself (the energy norm). For the 
Euler equations, however, such an energy norm does not 
exist and no numerical schemes are known which possess an 
equivalent best approximation property. 

(iii) This best approximation property means that the 
error of the computed solution, measured in the energy 
norm, is bounded above by that of the exact interpolant, i.e., 
the approximation in the space of current trial functions 
which has exact nodal values. Using results of interpolation 
theory [38], it is then possible to produce rigorous bounds 
on the error of the numerical approximation. These results 
are based on certain regularity assumptions on the solution, 
which for the Euler equations will be invalid in the vicinity 
of discontinuities in the flow. 

(iv) Finally, the error estimates produced are based on 
the computed solution. As this is only an approximate solu- 
tion, the error estimates will only be as good as the com- 
puted solution. This means that, even in the best situation, 

the optimal mesh will only be achieved in the asymptotic 
limit, i.e., when the solution is so good that the computed 
error becomes very reliable. 

In view of these observations and limitations, we have 
developed a heuristic adaptive strategy. This strategy uses 
error estimates which are based upon interpolation theory 
concepts and is a direct extension of the approach proposed 
in [9]. The possible presence of discontinuities in the solu- 
tion is taken into account and, in addition, the procedure 
provides information about any directionality which may 
be present in the solution. The advantages of using direc- 
tional error indicators become apparent when we consider 
the nature of the solutions which are to be computed, 
involving flows with shocks, contact discontinuities, etc. 
Such features can be economically represented on meshes 
which are stretched in appropriate directions. Although, 
these error estimates have no associated mathematical 
rigour, considerable success has been achieved with their 
use in practical situations. 

The computed error, estimated from the current solution, 
is transformed into a spatial distribution of the mesh 
parameters, interpolated using the current mesh. This mesh 
parameter distribution describes the characteristics of the 
new mesh, so that the original background mesh has now 
been discarded and its role has been taken by the current 
mesh. The new mesh is generated using the mesh generator 
described above. The resulting mesh is employed to produce 
a new solution. This procedure can be repeated several 
times until the user is satisfied with the quality of the 
solution. 

5.1. Error indicator in 1D 

The development of a method for error indication is con- 
siderably simplified if we restrict consideration to problems 
involving a single scalar variable. For this reason, when 
solving the Euler equations, a key variable is identified and 
then the mesh adaptation is based on the error analysis for 
that variable. The choice of the best key variable remains an 
open problem, but the density has been adopted for the 
computations reported in this paper. 

We consider first the one-dimensional situation in which 
the exact values of the key variable CJ are interpolated by a 
piecewise linear function cr*. The error E is then defined as 

E= o(x,)- a*(~~). 

We note here that if c is a linear function of x1 then the error 
will vanish. This is because our interpolation has been 
constructed using piecewise linear finite element shape 
functions. Moreover, if o is not linear, but is smooth, then 
it can be represented, to any order of precision, using 
polynomial shape functions. 
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To a first order of approximation, the error E can be 
estimated as the difference between a quadratic finite 
element interpolation 8 and the linear approximation. 
Assuming that the nodal values of the quadratic and linear 
approximations coincide, i.e., the nodal values of E are zero, 
a quadratic approximation can be constructed on each 
element, once the value of the second derivative is known. 
Thus the variation of the error E within an element e can be 
expressed as 

(15) 

where < denotes a local element coordinate and h, denotes 
the element length. The root mean square value EfMS of this 
error over the element is computed as 

where ( .I stands for absolute value. 
We define the “optimal” mesh, for a given degree of 

accuracy, as the mesh in which this root mean square error 
is equal over each element. In the present context, this 
requirement may be regarded as being somewhat arbitrary. 
However, the requirement of equidistribution of an 
appropriate error leads to optimal results when applied to 
elliptic problems. This requirement, therefore, leads to the 
expression 

(17) 

where C denotes a positive constant. 

5.2. Recovery of the Second Derivatives 

The computed solution is to be used to produce a spatial 
distribution of the mesh parameters which will be used by 
the mesh generator described in Section 2 to generate a new 
adapted mesh for the problem under investigation. The 
requirement of Eq. (17) suggests that the desired spacing 6 
on the new mesh should be computed according to 

The first derivative of the computed solution is piecewise 
constant and discontinuous across element boundaries. 
Therefore, straightforward differentiation of c* leads to a 
second derivative which is zero inside each element and is 
not defined at the element boundaries. However, by using a 
recovery process, based upon a variational or weighted 
residual statement [40], it is possible to compute 
approximate nodal values of the second derivatives from 
element values of the first derivatives of g*. 

(21) 

Following the process described in the previous section, 
nodal values of the second derivative can be obtained from 
the approximate solution on the current mesh. The use of 
expression (21) then yields directly a nodal value of the local 
spacing for the new mesh. 

To illustrate this process, consider a one-dimensional For the three-dimensional case, the approach adopted is 
domain, 0 < x1 < L, which has been discretised into (n - 1) 
linear two-noded finite elements. The piecewise linear 

to compute initially the components rnii of the 3 x 3 
symmetric matrix m of second derivatives of the computed 

distribution of the computed solution g* is expressed as solution, i.e., 

where Ni is the standard linear finite element shape function 
[40] associated with node i. Similarly, a piecewise linear 
approximation to the distribution of the second derivative, 
which we seek to determine, can be written as 

(19) 

Then, the nodal values of the second derivative can be 
computed from the approximate variational requirement 
that 

k = 1, . . . . n. (20) 

The values of the derivatives at the two end points can be 
inserted, if known, or can be taken to be equal to the 
constant value of the derivative in the adjacent elements. 
The resulting set of algebraic equations may be solved by 
using a few iterations of a Jacobi procedure [41]. 

5.3. Computation of the Mesh Parameters 

(22) CT*= t N,a,*, 
i= 1 
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This matrix can be decomposed in the form 

m=XAX-', (23) 

where A is a diagonal matrix. Now, expression (21) can be 
directly extended to the three-dimensional case by writing 
the quadratic form 

Sp' 
( 

i lml,BiPj =C 
> 

(24) 
r;j=l 

where fl is an arbitrary unit vector, S/I is the spacing along 
the direction of fl, and jmJ,- are the components of a 3 x 3 
symmetric matrix, 1 ml, defined as 

Im\ =X IAJ X-'. (25) 

It can be observed that this generalisation of the one-dimen- 
sional analysis amounts to using Eq. (21) independently 
along each of the principal directions of the Hessian matrix. 
These derivatives are computed, at each node of the current 
mesh, by using the three-dimensional equivalent of the 
procedure presented in the previous section. Figure I1 
shows how Eq. (24) is to be interpreted, with the value of 
the spacing in the p direction obtained as the distance from 
the origin to the point of intersection of the vector p with the 
surface of an ellipsoid. 

In a three-dimensional flow simulation, “optimal” values 
for the mesh parameters can now be obtained at each node 
of the current mesh. The ai, i = 1, 2, 3, directions are taken 
to be the principal directions of the matrix m. The corre- 
sponding spacings are computed from the eigenvalues ei, 
i = 1, 2, 3, of the matrix m as 

S;=& for i= 1, 2, 3. (26) 

The maximum value 6,,, is introduced to account for the 
possibility of a vanishing eigenvalue in (26) which would 
render that expression meaningless. The value of 6,,, is 
chosen to be the spacing size which will be used in the 
regions where the flow is uniform. On the other hand, 
maximum values of the second derivatives occur near 
discontinuities (if any) in the flow, where the error indicator 
will then indicate that smaller elements are required. By 
imposing a minimum value Smin for the mesh size, we 
attempt to avoid an excessive concentration of elements 
near discontinuities. The flow algorithm is known to spread 
discontinuities over a fixed number of elements (i.e., two or 
three) and 6,i, is therefore set to a value that is considered 
appropriate to represent discontinuities to a required 
resolution. This treatment also improves the performance of 
the method in the presence of shocks of different strength. 
There, the numerical values of the second derivative are 
different and the use of Eq. (26) alone would result in the 
assignment of different spacings (e.g., larger spacings to 
weaker shocks). 

The total number of elements to be generated in the new 
mesh will now depend on the values selected for C, 6,,,, 
and 6,,, . The values given to these constants are somewhat 
arbitrary. The criterion employed here is to select a value 
that produces a computationally affordable number of 
elements while reducing the estimated error. 

Application of the above procedure in one dimension is 
illustrated in Fig. 12. The distribution of the key variable used 
for adaptation is assumed to be given by a certain function 
5(x). Figure 12a shows one such function together with 
its second derivative. Application of the one-dimensional 
version of Eq. (24) can then be used in order to determine 
the distribution of spacing for the adapted mesh. This is 
shown in Fig. 12b as a dashed line. Figure 12b also shows 
how this distribution is modified in practice using Eq. (27) 
when the parameters hmin and 6,,, are introduced. 

The spatial distribution of the mesh parameters will be 
completely defined when a value for the constant C has been 
specified. Clearly, the total number of elements in the 
adapted mesh is controlled by the value of C. For smooth 
regions of the flow, this constant is a measure of the pre- 
dicted root mean square error in the new mesh. Therefore, 
this constant should be decreased each time a new mesh 
adaption is performed. On the other hand, solutions of the 
Euler equations are known to exhibit discontinuities, where 
the error estimate will always remain large. Therefore a 
different strategy is needed in the vicinity of such features. In 
the practical implementation of the present method, two 
threshold values for the computed spatial distribution of 
spacing are used: a minimum spacing dmin and a maximum 
spacing 6,,,, so that 

for i= 1, 2, 3. (27) FIG. 11. Definition of the spacing ~$9 along the direction fl. 
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FIG. 12. Computation of the curve of distribution of mesh spacings 
for a one dimensional case: (a) the solution 6(x) and the absolute value of 
its second derivative I?“(X); (b) distribution of mesh spacing 6(x) versus 
16”(x)l. 

5.4. Estimating the Number of Elements to Be Generated 

When regenerating a new mesh, the background mesh 
represents accurately the geometry of the computational 
domain. An estimate of the number of elements to be 
generated, denoted by N,, can then be obtained as follows. 
For each element of the background mesh, the value of the 
transformation T is computed at the centroid. Using this 
transformation the volume V, of this element in the 
normalised space is computed. The number of elements N, 

will be directly proportional to the total volume of the 
domain to be meshed in the normalised space; i.e., 

N,=;x c” Ve, (28) 
r=l 

where Nb is the number of elements in the background mesh 
and x is a constant. The value of x is set equal to 10, which 
has been found to give reasonable estimates for several 
generated meshes. The value of N, is then typically pre- 
dicted with an error of less than 15%, which is accurate 
enough for most practical purposes. At this stage the value 
of the constant C can be adjusted until the predicted 
number of elements is judged to be acceptable. This 
determination of the value of C is accomplished using a 
simple bisection procedure and normally only three or four 
evaluations of Eq. (28) are required. The adapted mesh is 
now generated with the values of the mesh parameters 
determined by this choice of C. 

6. EXAMPLE 

The prediction of the flow produced in shock interactions 
on cylindrical leading edges is of great interest to the 
designers of hypersonic vehicles. In two dimensions the so- 
called type IV interactions [42] can lead to highly localised 
and intense pressures and heat transfer rates [43], which 
result in stress levels which could form a significant hazard 
to load-carrying structures. Interest is now being directed 
towards a study of a similar problem in three dimensions, 
where the cylindrical leading edge is swept, in an attempt of 
determine whether or not the same behaviour can be 
expected. Methods developed for the two-dimensional 
problem have been shown to be rather successful [44,45], 
but no serious three-dimensional studies have been under- 
taken to date. Our initial attempts at performing an inviscid 

Computat!qal doman 

Incident shock 
Instrumented 
cylinder 

ComputatIonal domain 

FIG. 13. Computational domain and experimental configuration for a 
shock interaction problem on a cylindrical leading edge at Mach 8.04. 



simulation of a problem of this type are described here to 
illustrate the application of the adaptive remeshing process. 
The experimental configuration [43] and domain chosen 
for the computational simulation are shown diagramatically 
in Fig. 13. The numerical results have been produced for a 
sweep angle A = 15’ a cylinder of diameter D = 6 and length 
L = 18. The free stream Mach number is 8.04. The fluid 
which has been turned by the shock generator enters the 

computational domain with a Mach number of 5.26. The 
angle of attack a of the shock generator was taken to be 
12.5”. A first Euler solution was obtained on a uniform mesh 
of unit element size. The mesh employed and density con- 
tours of the solution are shown in Fig. 14. This solution was 
used in the adaptive remeshing procedure to produce a 
second mesh and solution which are shown in Fig. 15. 
Again, the adaptation process was repeated to produce the 
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FIG. 14. First solution in the adaptive process: mesh employed and iso-density contours. 

581/103/2-7 
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FIG. 15. Second solution in the adaptive process: mesh employed and iso-density contours. 

final mesh and solution which are depicted in Fig. 16. Even TABLE I 

though these results are still far from being mesh inde- 
pendent, the improvement in the solution quality during the Mesh Elements Points Boundary 6,,. 6,,, C N, 

adaptivity process can be noted by examining, in Fig. 17, 
the comparison between the results of experiment and the 

values of the computed coefficient on the cylinder pressure 
surface in a cross section located halfway along the cylinder. 

: 51190 10041 4976 1.0 1.0 - 55775 

loo071 18660 6004 0.5 3.0 0.85 100836 

3 171800 31083 7406 0.18 3.0 0.8 168420 
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FIG. 16. Third solution in the adaptive process: mesh employed and iso-density contours. 

The characteristics of each mesh are summarised in Table I the final mesh on three planes normal to the axis of the 
which shows the number of tetrahedral elements, nodal cylinder. Finally, an idea of the mesh adaptation occurring 
points, number of triangles on the boundary of the domain, in the interior of the three-dimensional domain can be 
and the values of the generation parameters defined above. gained by examining in Fig. 19 the intersection of the three 
A more detailed view of the shock interaction is given in meshes with a plane which is normal to the cylinder axis, 
Fig. 18, which displays the computed density contours on halfway along the cylinder. 
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FIG. 17. Computed pressure coefficient on the cylinder surface in a 
cross section located halfway along the cylinder. 

These computations were performed on a Gay 2 and it is 
of interest to give an indication of the computational 
requirements of the proposed procedure. The meshes were 
generated at a rate of 6500 elements per minute, which 
means that the final mesh employed was generated in 
26 min. The flow solution was deemed to be converged on 
this mesh after 1200 explicit timesteps and this required 
31 min. 

FIG. 18. View of the iso-density contours for the final mesh on the 
cylinder surface and three planes normal to the cylinder axis. 

FIRST MESH SECOND MESH THIRD MESH 

FIG. 19. Halfway cross sections normal to the cylinder axis of the 
three meshes employed. 

7. CONCLUSIONS 

A complete procedure for the adaptive solution of the 
compressible Euler equations in general three-dimensional 
regions has been presented. The flexibility of the method 
means that adapted solutions of enhanced accuracy can 
be systematically and rapidly produced. In the example 
presented, the adaptivity decreases the minimum mesh 
spacing by a factor of five, while the number of degrees of 
freedom is increased by less than a factor of 3.5. Based upon 
our previous experiences [46] with alternative adaptive 
strategies, such as classical or directional enrichment, this 
method certainly appears to make better use of available 
degrees of freedom. 

One important area of the approach which needs further 
improvement is the error estimating procedure. It is 
apparent from the computations reported here that the use 
of the techniques which are currently available can lead to 
a viable method of solution for a certain class of problems. 
However, the development of a rigorous error estimating 
theory is regarded as an essential prerequisite to the routine 
use of adaptive mesh techniques in the industrial environ- 
ment. 
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